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Abstract—This paper proposes a new method to analyze driver 

behavior. Analysis of the behavior is done through the observation 

of the time-evolution of parameters of simple driver models. The 

behavior analysis is decomposed in two steps. First the driver 

model have to be selected or designed to represent the average 

behavior of a large sample of drivers. Then personal driver’s 

behavior evolution can be analyzed over the time. To be able to 

identify time-varying non-linear hybrid model parameters, an 

iterative metaheuristic method based on particle optimization and 

moving average filtering has been created. This method enables to 

identify parameters of any model type while filtering the 

parameter time-variation based on the possible parameter 

dynamics. This methods also enables to interpolate parameters 

values while model output values are occluded. Demonstration of 

the identification algorithm efficiency with Gipps car-following 

driver model is done based on theoretical examples, and time-

evolution of parameter are identified from real-world measured 

data.   

Keywords—driving behavior; parameter analysis; parameter 

identification; particle optimization; Gipps model 

I. INTRODUCTION 

Modeling and analysis of driving behavior are fundamental 

issues to realize safe and reliable driving assistance systems, 

traffic flow models, and ITS systems. Driving behavior can be 

analyzed from large datasets statistical point of view [1], or by 

model-based parameters interpretation [2]-[3]. Nevertheless, 

usual methods do not allow to understand time-varying 

parameters evolution. This last point is investigated in this 

paper. 

Driver models have been approached from various fields 

and methodologies. The most traditional approach to the driver 

model is in cognitive science field. This approach is based on 

the observation of human cognitive actions with a 

psychophysical understanding of human behavior [4]. The 

other traditional model-based approach is by data fitting on 

basic mathematical models [1]. Recently, more elaborate and 

complex machine learning methods have been used to 

accurately model and analyze human behavior [5]-[8]. 

However, these sophisticated models lead to difficulties to 

understand driver’s behavior. To be able to understand driver 

behavior, we believe that the driver model should be kept 

simple enough. Then while a simple driver model can express 

the driving behavior in a situation, it can provides insufficient 

accuracy to express the adaptive behavior of the human driver. 

Thus the novel approach of this paper is to use simple driver 

models to analyze the driving behavior through the identified 

time-varying parameters. 

Most car-following models are non-linear hybrid systems 

[9] with heterogeneous types of modes equations. This is due to 

the fact that drivers are generally not modelled as a linear 

controller [4]. To tackle the parameter identification problem, a 

metaheuristic algorithm based on the particle filter method and 

on differential evolution has been developed [10]-[11]. Due to 

heterogeneity of the models equations, each mode equation’s 

parameters set is identified independently. This approach leads 

to regressor vector partial occlusion when the identified mode 

is not providing the model output. A filtering method is 

integrated to the identification to lower the amount of identified 

noise and to be able to extrapolate parameter identification in 

data occlusion cases. 
Among the variety of available driver models [12], the 

microscopic traffic flow Gipps car-following model has been 
selected [13]-[14]. This model is widely used to model vehicles 
behaviors is traffic flow field. Gipps model has been designed 
so that its parameters are representative of drivers characteristics. 
Thus time-varying Gipps model parameters can be investigated 
to analyze drivers behavior evolution. Moreover, understanding 
the parameters evolution can enable improvement of the models 
behavior with few added complexity. 

In the second section, driver model selection and functioning 
is explained. In the third section, the parameter identification 
method is detailed. In the fourth section, demonstration of the 
identification process efficiency is shown, and in the fifth 
section application to measurement data is done. Finally 
conclusion is drawn in the last section. 

II. DRIVER MODELING 

This section details the driver model’s choice for the 

analysis of drivers’ behavior. Then functioning of the selected 

model is explained. 

The goal of this research is to understand user variability 

and behavior modifications according to models parameter 

evolution. Thus the candidate model for this study should have 

been created with the intention to have physically 

understandable parameters values. Moreover, a widely used 

model with possibility to run traffic flow simulations would be 

beneficial to rely on years of solid bibliography and to be able 

to expend the field on the output of the research.  

Based on these considerations, the Gipps microscopic 

traffic-flow model has been selected [13]. This model is a 

2016 IEEE International Conference on Systems, Man, and Cybernetics • SMC 2016 | October 9-12, 2016 • Budapest, Hungary

978-1-5090-1897-0/16/$31.00 ©2016 IEEE SMC_2016    002984



discrete-in-time continuous-in-space collision avoidance type 

traffic flow model [12]. It has been developed for highway 

average congestion levels situations. It is composed of two 

equations. An equation based on data fitting to reproduce 

acceleration behavior of the driver, and an equation based on 

the mathematical derivation of the required braking to maintain 

a safety distance with a delay characteristic and a delay margin. 

Gipps model can be expressed as follow: 

 ���� + ����	

= ��
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with: 

- �� the ego-vehicle velocity, ��%& the leading vehicle 

velocity 

- ����	 the apparent driver reaction time 

- ��� the desired free flow velocity of the vehicle n 

- $�� the length + stopping distance of the ego-vehicle 

- a- the maximum acceleration of the ego-vehicle 

- b- the maximum desired braking acceleration of the 

ego-vehicle 

- ��%&' the estimation of the most severe leading vehicle 
braking. 

 

III. PARAMETER IDENTIFICATION METHOD 

This section explains step-by-step the design of the 

developed time-varying parameter identification method. 

The identification process has been designed to be applied 

to any type of driver model, including nonlinear non-

differentiable and time varying problems. Thus an iterative 

differential evolution method has been selected. Due to the 

large number of parameters over time, and the desired to be able 

to handle filtering over time, the differential evolution method 

has been implemented in a stochastic framework using a SIR 

(Sample, Importance weighting, Resampling) particle filtering 

method. To do so, the identified parameter is considered as the 

state variable. This approach enables fast optimization speed 

and easy parametrization of the identification algorithm, but 

does not insure an optimal result. To avoid identification of the 

measurement noise, a moving average (MA) filtering step is 

included in the identification process. Multiple parameters can 

be identified simultaneously as the particle filtering method 

allows it. Nevertheless, quality of the algorithm convergence 

would have to be carefully monitored and identification 

computation burden can become heavy [15].  

In the case of heterogeneous equations hybrid models, 

parameters are only represented in certain modes. Thus when 

the mode is not used to calculate the model output, the regressor 

vector cannot be created to identify parameters. This situation 

is called output data occlusion. The filtering step added to the 

SIR particle optimization enables to continue parameter 

identification when the output data is occluded. In the 

implemented case no prior knowledge is assumed on the 

parameter dynamics, thus simple linear extrapolation is used. 

In the parameter identification process, /� represents the 

input data and ��  represents the output data, and � ∈11, 34, 3 ∈ ℤ the time step. The number of resampled particles 

at each time step is 6 ∈ ℤ and the multiplicative sampling factor 

is 67 ∈ ℤ. 

The required prior knowledge for the identification process 

are identified parameters upper and lower boundaries, the 

identification speed σ9:;;< ∈ ℝ>∗ , the filtering parameters σ@ABC;DE ∈ ℝ>∗ representing the moving average time width, and σ@ABC;DF ∈ ℝ>∗  is the standard deviation of the identified 

parameter time-evolution. The current method does not allow 

to  estimate automatically σ@ABC;DF. G is the identified parameter. 

The identification process is the following: 

 

 

Initial particles are randomly spread over the parameter 

interval at each time step. 
Then, as long as the total residual derivative is too high: 

 

1- Sampling: sampling of new parameters particles based on 

the resampled particles $��HIJ	G�L �$ 
~HNG�OPG�L%&�$&
, QRS��TU G�O represents the correct value of G�	: iteration step $& ∈ 11, 64: resampled particle index $ ∈ 11, 6 ∗ 674: sampled particle index 

 

 

2- Importance weighting 1: least error weighting for each 

particle.  

If VWWI/$V�T�X� = 0, Y�L �$
 = &Z[N\]̂�R
,_]U%`]Za>& 
Otherwise, Y�L �$
 = &�b∗b[
 Y�L �$
  represents the weight of particle $  at step time �  at 

iteration i 
 

 

 
Figure 1: Parameter identification process steps 1 and 2 
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3- Importance weighting 2: filtering process. 

a. Parameter estimate at each time step based on 2- 

If VWWI/$V�T�X� = 0, 7I�G�L � G�L d�ef��#R
gY�L �$
hi 

Otherwise, 7I�G�L � J#�e�HVI��V�N7I�G�%j , 7I�G�>L U 
� � and � � represent the previous and following position of 

parameter estimate with non-occluded regressor vector. 

In this example, linear extrapolation is used to estimate missing 

occluded data cases. If the model time-varying dynamics have 

a model it can be used to estimate it more accurately. 

 

 
Figure 2: Parameter identification process step 3-a. 

 

b. Creation of moving average filtering weights 

Yk� ��
 � 3��, Q7I�Jek
 
Yk�L  represents the set of weights over the time steps centered 

on the time step � at iteration	. 
Here Gaussian distribution is used, but the support width is 

limited. Laplace distribution would actually be recommended. 

 

c. Creation of the filter on the particles 

Moving average on parameter estimate parameter for each 

time step n: 

��flI�G�L �
∑ 7I�GnL ∗ Yk�L�o
n

∑ Yk�L�o
n
 

Creation of the dynamics probability distribution: 

Y3� �$
 � 3���flI�G� , Q7I�Je3
 
 

d. Adjust the weights from 2- 

Y2� �$
 � Y� �$
 ∗ Y3� �$
 
 

 
Figure 3: Parameter identification process step 3-b.c.d. 

4- Resampling: keep best fitted based on weight 

pe�Y	6	H�e�WIJ$	G�L �$&
	Y�q	HeV���I�r	s	Y2�L  

$& ∈ 11, 64: resampled particle index 

 

 
Figure 4: Parameter identification process step 4 

IV. VERIFICATION BY TEST DATA 

In this section, efficiency of the developed parameters 
identification method is investigated on a single parameter 
identification. To do so, Gipps model first runs with known 
(ideal) � time-varying parameters to generate a known output. 
The lead vehicle used for this demonstration has been recorded 
from a real vehicle dynamics (see Figure 10). Other Gipps model 
parameters are constant (see Table 1) and have been identified 
a-priori. The time-varying parameter is identified using the 
scheme described in the previous section. Ideal parameter 
variation is done at different frequencies. Examples where noise 
is added to the model output signal are also demonstrated. One 
step of time is 0.6 second. The “mode” represents the output data 
occlusion. If “mode=1”, then the output data can be used to 
identify the time-varying parameter. The optimization error is 
based on the norm one difference between the model output 
velocity and the previously generated velocity. Following 
examples optimization duration is 32s on an Intel i7 870 
personal computer. 

Table 1: Gipps model fixed parameter values. 

Variable �� $� ����	 � � �t 
Value 20 6.5 0.3 1.7 G� -3.2 

 

 
Figure 5: Low frequency parameter evolution case. No noise added on the 
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model output. 

 
Figure 6: High frequency parameter evolution case. No noise added to the 
model output. 

 
Figure 7: Noise added to the calculated model output. Without filtering in the 

identification process. 

 
Figure 8: Noise added to the calculated model output. With filtering in the 
identification process. 

 
As we can observe in Figure 5 and Figure 6, the time-varying 

parameter is correctly identified and output data occlusion is 
correctly handled by the identification process. Figure 7 and 
Figure 8 show that the filtering process enables to avoid most of 
the noise on the identified parameter estimate. Thus the 
proposed parameter identification method can be used to 
interpret model parameters time-varying behavior. 

 

V. APPLICATION TO MEASUREMENT DATA 

In order to observe realistic driver parameter evolution, real 

world experiment was lead. Two different examinees followed 

a lead vehicle on a highway. Each driver repeated the 

experiment twice, once with a soft driving manner, once with 

an aggressive driving manner. The notions of aggressiveness 

was let free to the understanding of the driver. The leading 

vehicle was equipped with a GPS based reference velocity 

profile display system which showed a predefined velocity 

pattern on a smartphone (see Figure 9). The ego-vehicle was 

equipped with a CAN bus acquisition tool, and a millimeter-

wave radar. The CAN bus acquisition tool was used to record 

the GPS position, the velocity, and acceleration at the wheel of 

the vehicle. The millimeter-wave radar was used to get precise 

information on the distance to the leading vehicle, and to 

calculate the relative velocity. 

 

 
Figure 9: View from the driver of the leading vehicle. The velocity profile 

display system is squared and zoomed on the right. Current velocity, future 
velocity and velocity plot were displayed. 

 

A velocity profile reference shown in Figure 10 was created. 

This velocity profile included a wide range of accelerations and 

decelerations in order to cover most of the possible driving 

situations. Low velocity under 5 m/s was excluded from the 

identification data since the Gipps driver model, used to 

identify parameter variation is not suited for this kind of 

situation. 

 

 
Figure 10: Reference velocity profile of the leading vehicle used for real world 
experiment. 
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     In this case, where the parameter is identified from 

measurement data, direct verification of the accuracy of the 

identified parameters can be done. Thus the identification 

algorithm convergence is assumed based on the residual 

derivative value. In this section, time-varying identified 

parameter values are compared with classic constant parameter 

identification values. To confirm correct parameter regression, 

global identification residual with constant and time-varying 

parameters are compared (see Table 2 and Figure 11). The 

residual error is calculated as follow: 

 

 res;DDxD � Z7�G���T , /�
 � ��Z& (2) 

with / the input data and � the output data, G is the identified 

parameter, and � the time step. 

 
Table 2: Residual error with constant parameter simulation and 

time-varying parameter simulation. 

 Constant param. Variable param. 

A soft 519 384 

A aggressive 598 511 

B soft 339 239 

B aggressive 337 262 

 

 
Figure 11: Residual error comparison histogram for two parameter 

identification methods and four driving patterns. 

 

 

 
Figure 12: Driver A, soft driving case 

 

 
Figure 13: Driver A, aggressive driving case 

 

 

 
Figure 14: Driver B, soft driving case 

 

 
Figure 15: Driver B, aggressive driving case 
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     In Figure 12 to Figure 15, it can be observed that the 

tendency of the identified parameter �, representing the desired 

deceleration of the driver, is logically correlated with the 

driving instructions. Fig. 11, 12 and 13 show clean 

identification values and data occlusion could be handle 

properly. In Figure 15, instant values of the parameter are 

sometimes too low. This could mean that other parameter of the 

model, like the apparent reaction time tD;z{  should also be 

optimized, or that the Gipps model is not correctly suited for 

this type of driving situation. To be able to identify parameters 

independently, a prior study on the correlation between the 

model parameters should be thoroughly done. Otherwise, 

simultaneous identification of several model parameters should 

be performed. 

      The proposed identification method does allow parameter 

analysis. To understand how to model the parameter behavior, 

longer driving recording and more information on the driving 

situation and on the surrounding environment would be 

required. It would then be possible to implement a simple 

parameter evolution model based on the driver behavior 

modification and correlated to the driving environment. 

 

VI. CONCLUSION 

     This paper proposes a new point of view to analyze drivers’ 

behaviors. Analysis of the behavior is done through the 

observation of the time-evolution of parameters of simple 

driver models. The behavior analysis is decomposed in two 

steps. First the driver model is selected or designed to represent 

the average behavior of a large sample of drivers. Then personal 

driver’s behavior evolution can be analyzed over the time. To 

be able to identify time-varying non-linear hybrid model 

parameters, an iterative metaheuristic identification method 

based on SIR particle filtering and moving average filtering has 

been created. This method enables to identify parameters of any 

model type while filtering the parameter time-variation based 

on the possible parameter dynamics. This methods also enables 

to interpolate parameters values while model output values are 

occluded. Demonstration of the identification algorithm 

efficiency on a single parameter could be done based on 

theoretical example, and time-evolution of parameter could be 

identified from real-world measured data. 

     Our future research will extend the identification process 

demonstration to simultaneous multiple identification case, and 

use this parameter identification method to model parameter 

time-variations, and analyze the influence of parameter time-

variation traffic flow simulation. 
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